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Abstract
It is shown that the functional derivatives in density-functional theory (DFT)
can be explicitly defined within the domain of electron densities restricted
by the electron number, and a constructive definition of such restricted
derivatives is suggested. With this definition, Kohn–Sham (KS) equations
can be established for an N -electron system without extending the functional
domain and introducing a Lagrange multiplier. This may clarify some of
the fundamental questions raised by Nesbet (1998 Phys. Rev. A 58 R12). The
definition naturally leads to the fact that the KS effective potential is determined
only to within an additive constant, thus the KS levels can shift freely and the
relation between the highest occupied molecular orbital (HOMO) energy and
the ionization potential of the system depends on the choice of the constant.
On the other hand, if the domain of functionals is indeed extended beyond
the electron number restriction, conclusions depend on whether the extended
functionals have unrestricted derivatives or not. It is shown that the ensemble
extension of DFT to open systems of mixed states (Perdew et al 1982 Phys. Rev.
Lett. 49 1691) leads to an energy functional which has no unrestricted derivative
at integer electron numbers. Hence after this extension, the relation between
the HOMO energy and the ionization potential for an N -electron system is still
uncertain. Besides, there are different extensions of the energy functional to
a domain of densities unrestricted by the integer electron number, resulting in
different unrestricted derivatives and electron systems with different chemical
potentials. Even for the exact exchange-correlation potential, there is still an
undetermined constant, whether it is a restricted or unrestricted derivative.
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1. Introduction

Density-functional theory (DFT) of Hohenberg, Kohn and Sham [1, 2] has become one of
the mainstays for electronic structure calculations of solids and molecules. In DFT, the
energy functional Ev[ρ], where ρ(�r) is the electron density of an N -electron system moving
in the region � and the external potential v(�r), plays the central role. The ground-state
electron density minimizes the energy functional, thus variational principles are applied and
the functional derivative with respect to the electron density is necessary. Because the electron
density must satisfy∫

�

ρ(�r) d�r = N, (1)

a Lagrange multiplier µ is introduced and the variational process is carried out by letting

δ

{
Ev[ρ] − µ

∫
�

ρ(�r) d�r
}

=
∫

�

{
δEv[ρ]

δρ(�r) − µ

}
δρ(�r) d�r = 0 (2)

where δρ(�r) is an arbitrary variation of ρ(�r), Ev[ρ] is implicitly considered as a functional
defined in a larger domain of ρ(�r) unrestricted by equation (1) and µ is believed to be the
chemical potential. Through the introduction of an auxiliary non-interacting electron system,
equation (2) leads to a set of single-electron Schrödinger equations, the Kohn–Sham (KS)
equations.

This scheme is not unquestionable. Perdew et al [3] listed the question of whether Ev[ρ] is
defined for ρ(�r) unrestricted by equation (1) as a fundamental one which lies obscured beneath
equation (2). They extended the domain of Ev[ρ] by introducing the ensemble of an open
system described by statistical mixtures. However, one of their results, the relation between
the highest occupied molecular orbital (HOMO) energy and the ionization potential, gave rise
to a debate [4–6], and has been intensively studied [7–12]. The crux of the problem seems to
lie in the definition of the functional derivative. Later Nesbet [13], among other things, queried
whether the functional derivative of the kinetic energy of a non-interesting electron system
is equivalent to a local potential function and claimed that equation (2) is inconsistent with
KS equations. Nesbet’s claims were followed by many works either demonstrating that the
derivative of the kinetic energy functional of the non-interacting electrons is a local function or
studying the functional derivative of DFT [14–21]. Lindgren et al [22] in their review article
discussed two different kinds of functional derivatives and demonstrated that the KS scheme
actually can be established with the densities restricted by equation (1). However, apart from
an existence statement, there still lacks an explicit constructive definition for the derivative of
a functional defined in the domain of densities restricted by equation (1). As we shall see,
such a definition may help to clarify some of the obscure and disputed fundamental questions
in DFT.

For simplicity, we hereafter call a functional defined in the domain of densities restricted
by equation (1) as a restricted functional, its derivative as a restricted derivative, and a
functional defined in an extended domain of densities unrestricted by equation (1) as an
unrestricted functional, its derivative in the extended domain as an unrestricted derivative.
In this paper, we suggest a constructive definition for the restricted derivative of a restricted
functional defined in a domain of densities restricted by equation (1). With this definition, the
stationary condition for the DFT energy functional to take a minimum value is obtained and
KS equations can be established for an N -electron system, without extending the functional
domain and introducing a Lagrange multiplier. This may clarify some of the questions raised
by Nesbet [13]. The definition also naturally brings about the fact that the functional derivative
is determined only to within an additive constant, which leads to the resulting non-determinacy
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of the KS effective potential with a constant and the shift of KS energies. Thus, the relation
between the HOMO energy and the ionization potential of the system depends on the choice
of the constant in the derivative of the exchange-correlation energy. On the other hand, if
DFT functionals are indeed extended so that they have definitions in a domain of densities
unrestricted by equation (1), conclusions depend on whether or not the extended functionals
have unrestricted derivatives. If they have, then the derivative of the energy functional at
the ground-state density is the chemical potential of the system, the KS effective potential
and KS energies are uniquely determined, and there is a definite relation between the HOMO
energy and the ionization potential. Otherwise, the derivative of the energy functional has no
physical meaning, the KS effective potential and KS levels are not uniquely determined, and
the relation between the HOMO energy and the ionization potential is uncertain. It is shown
that the ensemble extension of Perdew et al [13] leads to the energy functional which has no
unrestricted derivative at integer electron numbers. Thus after the ensemble extension, the
relation between HOMO energy and the ionization potential for the N -electron system still
remains uncertain. Besides, there are different extensions of the energy functional which lead
to different unrestricted derivatives and electron systems with different chemical potentials.
Even for the exact exchange-correlation potential, there is still an undetermined constant,
whether it is a restricted or unrestricted derivative.

2. Constructive definition of restricted functional derivatives

For an unrestricted functional F [ρ], its derivative is usually defined by the following existence
statement, that is, if there exists a function δF [ρ]/δρ(�r) of space positions such that for any
variation δρ(�r) of ρ(�r),

F [ρ + δρ] − F [ρ] =
∫

�

δρ(�r)δF [ρ]

δρ(�r) d�r + o(‖δρ‖), (3)

where ‖δρ‖ is some kind of norm of δρ(�r) and o(‖δρ‖) is a higher order infinitesimal quantity,
that is lim‖δρ‖→0 o(‖δρ‖)/‖δρ‖ = 0, then this function is defined as the functional derivative
of F [ρ] at ρ(�r). Equation (3) defines the so-called Fréchet derivative [17, 18, 22], and this
definition is equivalent to the following constructive alternative: one takes a small region ��

at the position �r and chooses a variation δρ(�r) such that δρ(�r) has the same sign in �� and is
zero outside ��, then one defines the derivative value at position �r to be

δF [ρ]

δρ(�r) = lim
��→�r,δρ→0

F [ρ + δρ] − F [ρ]∫
��

δρ(�r) d�r , (4)

where �� → �r means that the volume �� shrinks to the point �r . Equation (4) indicates that
δF [ρ]/δρ(�r) is a single-valued function of �r .

For a restricted functional F [ρ], the definition by the existence statement of equation (3)
is also adopted, only the restriction∫

�

δρ(�r) d�r = 0 (5)

must be applied to the variation of ρ(�r). This brings about the fact that the derivative is now not
uniquely determined: for any constant C, δF [ρ]/δρ +C satisfies equations (3) and (5) and can
be defined as a derivative as well. Conversely, if another function satisfies equations (3) and (5),
then this function can differ from δF [ρ]/δρ only by an additive constant. The constructive
definition, equation (4), however, is no longer applicable, because

∫
��

δρ(�r) d�r �= 0, and
ρ + δρ will go out of the functional domain. Here, we suggest a constructive definition for
the derivative of the restricted functional F [ρ] as follows. We first choose a fixed position �r0
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in �. For �r �= �r0, we take a small region �� at �r and a small region ��0 at �r0, respectively,
and let �� ∩ ��0 = φ. We then choose the variation δρ(�r) such that


δρ(�r) > 0 (�r ∈ ��)

δρ(�r) < 0 (�r ∈ ��0)

δρ(�r) = 0 (�r /∈ �� ∪ ��0)

or




δρ(�r) < 0 (�r ∈ ��)

δρ(�r) > 0 (�r ∈ ��0)

δρ(�r) = 0 (�r /∈ �� ∪ ��0),

(6)

and ∫
��

δρ(�r) d�r +
∫

��0

δρ(�r) d�r = 0. (7)

The restricted derivative now can be defined by

δF [ρ]

δρ(�r) = lim
��→�r,��0→�r0
δρ→0

F [ρ + δρ] − F [ρ]∫
��

δρ(�r) d�r + C, (8)

where C is an arbitrary constant. The derivative value at the position �r0 can be determined
by letting δF [ρ]/δρ(�r0) = lim�r→�r0 δF [ρ]/δρ(�r). The limit value in equation (8) depends
on the choice of �r0. However, as will be proved later, for a different choice of the fixed position,
the limit value only changes by a constant independent of �r . Similar to primitive functions in
the case of indefinite integral, the restricted functional derivative is a family of functions. Due
to this fact, a constant C is added to the definition for a specifically chosen �r0 and this will
give the whole family of the functions. In practical use, a specific value of C may be adopted
and the derivative becomes a single local function. Let

α = F [ρ + δρ] − F [ρ]∫
��

δρ(�r) d�r − δF [ρ]

δρ(�r) + C; (9)

then α is an infinitesimal quantity,

lim
��→�r,��0→�r0
δρ→0

α = 0, (10)

and

F [ρ + δρ] − F [ρ] =
{

δF [ρ]

δρ(�r) + α − C

}∫
��

δρ(�r) d�r. (11)

We briefly prove that equations (3) and (8) are equivalent for a restricted functional. To
get equation (8) from equation (3) is direct. We only need to choose δρ(�r) in equation (3)
according to equations (6) and (7), and a limit process will lead to equation (8), provided
we take C as δF [ρ]/δρ(�r0). To get equation (3) from equation (8), for any variation δρ(�r)
satisfying equation (5), we divide � into K + 1 small regions ��i , i = 0, 1, 2, . . . , K , of
which ��0 is the region containing the position �r0. The division can always be realized such
that in each ��i , i = 1, 2, . . . , K , δρ(�r) keeps its sign. If we define

δρi(�r) =
{

δρ(�r) (�r ∈ ��i)

0 (�r /∈ ��i)
(12)

for i = 0, 1, 2, . . . , K , then δρ(�r) = ∑K
i=0 δρi(�r). For each δρi(�r), i = 1, 2, . . . , K ,

we construct a function δρ ′
i (�r) in ��0, such that δρ ′

i (�r) has the opposite sign of δρi(�r),
δρ0(�r) = ∑N

i=1 δρ ′
i (�r), and∫

��i

δρi(�r) d�r +
∫

��0

δρ ′
i (�r) d�r = 0. (13)
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The functional variation can be expressed as

F [ρ + δρ] − F [ρ] = F [ρ + δρ0 + · · · + δρK−1 + δρK ] − F [ρ + δρ0 + · · · + δρK−1 − δρ ′
K ]

+ F [ρ + δρ0 + · · · + δρK−1 − δρ ′
K ] − F [ρ + δρ0 + · · · + δρK−2 − δρ ′

K−1 − δρ ′
K ]

+ · · · + F [ρ + δρ0 + δρ1 − δρ ′
2 − · · · − δρ ′

K ]

−F [ρ + δρ0 − δρ ′
1 − δρ ′

2 − · · · − δρ ′
K ]. (14)

Due to equation (13), densities in the square brackets all satisfy equation (1). According to
equation (11), we get

F [ρ + δρ] − F [ρ] =
{

δF [ρ + δρ0 + · · · + δρK−1 − δρ ′
K ]

δρ(�rK)
+ αK − C

}

×
∫

��K

δρ(�r) d�r +

{
δF [ρ + δρ0 + · · · + δρK−2 − δρ ′

K−1 − δρ ′
K ]

δρ(�rK−1)
+ αK−1 − C

}

×
∫

��K−1

δρ(�r) d�r + · · · +

{
δF [ρ]

δρ(�r1)
+ α1 − C

} ∫
��1

δρ(�r) d�r, (15)

where αi are the infinitesimal quantities and each �ri is a position in ��i , i = 1, 2, . . . , K .
By employing the continuous assumption, through a limit process it can be proved that
equation (15) leads to F [ρ + δρ] − F [ρ] = ∫

�
δρ(�r){δF [ρ]/δρ(�r)} d�r + o

(∫
�

|δρ(�r)| d�r),
thus equation (3) holds. For simplicity, the over-elaborations are omitted. Similarly, for three
positions �r , �r0 and �r ′

0, we can respectively take δρ and δρ ′ according to equations (6) and (7).
By writing F [ρ + δρ ′] − F [ρ] = F [ρ + δρ + δρ ′ − δρ] − F [ρ + δρ] + F [ρ + δρ] − F [ρ], it
can be proved that the limit value in equation (8) only varies a constant independent of �r , if
the fixed position is chosen to be �r ′

0. Because equations (3) and (5) lead to

lim
λ→0

F [ρ + λδρ] − F [ρ]

λ
=

∫
�

δρ(�r)δF [ρ]

δρ(�r) d�r, (16)

where λ is a real variable, equation (8) gives a constructive definition of the Gâteaux derivative
of a restricted functionalF [ρ] [18, 22].

The key to the constructive definition equation (8) is the formation of δρ(�r) satisfying
equation (5). Apart from equations (6) and (7) suggested in this paper, there might be other
formations. However, whatever the formations are, any constructive definition of restrictive
functional derivatives must satisfy equation (3). Different definitions thus should give the
same family of functions. The additive constant is inherent to the restrictive derivatives and
its implications to DFT.

3. Restricted functional derivatives and Kohn–Sham equations

With the constructive definition, the variational principles can be applied to a restricted
functional F [ρ], without extending its domain and introducing a Lagrange multiplier, because
a stationary condition can be obtained through equation (8) for the functional to take an
extreme value. If F [ρ] takes a minimum value at ρ(�r), then in equation (8), for δρ(�r) > 0 in
��, we have

lim
��→�r,��0→�r0
δρ→0

F [ρ + δρ] − F [ρ]∫
��

δρ(�r) d�r � 0, (17)

but for δρ(�r) < 0 in ��, we have

lim
��→�r,��0→�r0
δρ→0

F [ρ + δρ] − F [ρ]∫
��

δρ(�r) d�r � 0, (18)
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hence the limit value must be zero, equation (8) becomes

δF [ρ]

δρ(�r) = C, (19)

meaning the derivative has the constant value at any position �r in �. Equation (19) is only a
necessary condition for F [ρ] to take an extreme value. However, as in the usual extreme-value
problems, if there is only one ρ(�r) satisfying equation (19), then F [ρ] takes the extreme value
only at this ρ(�r).

Kohn and Sham [1, 2] and later Levy [23] established the restricted universal functional
F [ρ] and restricted energy functional Ev[ρ] of DFT. According to Levy,

F [ρ] = min
ψ→ρ

〈ψ |T̂ + Û |ψ〉, (20)

and

Ev[ρ] =
∫

�

v(�r)ρ(�r) d�r + F [ρ], (21)

where T̂ = (−1/2)
∑N

i=1 ∇2
i and Û = ∑N−1

i=1

∑N
j=i+1 1/|�rj − �ri | are the kinetic and

electron–electron repulsion operators for the N -electron system, respectively, and ψ is an
arbitrary normalized wavefunction which has the electron density ρ(�r). At present, the only
result about the derivatives of F [ρ] and Ev[ρ] is that for a given v-representable electron
density ρ(�r),

δF [ρ]

δρ(�r) = −v(�r) + const, (22)

where v(�r) is the external potential that produces the electron density ρ(�r), which is
usually unknown [22]. With the constructive definition, as long as the minimum search of
equation (20) is realized, the derivatives δF [ρ]/δρ(�r) and δEv[ρ]/δρ(�r) can be calculated
through equation (8).

Because the true ground-state electron density ρ(�r) minimizes Ev[ρ], according to
equation (19), the restricted derivative of Ev[ρ] must be a constant at ρ(�r),

δEv[ρ]

δρ(�r) = C. (23)

According to KS [2], the energy functional is expressed as

Ev[ρ] = Ts[ρ] +
∫

�

ρ(�r)v(�r) d�r +
1

2

∫ ∫
�×�

ρ(�r)ρ(�r ′)
|�r − �r ′| d�r d�r ′ + Exc[ρ], (24)

where Ts[ρ] is the kinetic energy of the non-interacting electrons, which can be defined through
equation (20) by letting Û = 0, and Exc[ρ] is the exchange-correlation energy. Equation (23)
then becomes

δTs[ρ]

δρ(�r) + v(�r) +
∫

�

ρ(�r ′)
|�r − �r ′| d�r ′ +

δExc[ρ]

δρ(�r) = C. (25)

Now all the derivatives in equation (25) are restricted ones. Also according to KS, an effective
potential is defined as

veff(�r) = v(�r) +
∫

�

ρ(�r ′)
|�r − �r ′| d�r ′ +

δExc[ρ]

δρ(�r) , (26)

where the density ρ(�r) is a fixed function, the ground-state density of the N -electron system.
Let the energy functional of the non-interacting electrons moving in the region � and the
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external potential veff(�r) be Es[ρ] = Ts[ρ] +
∫
�

veff(�r)ρ(�r) d�r , according to equation (25),
ρ(�r) also satisfies

δEs[ρ]

δρ(�r) = C. (27)

If ρ(�r) is the only solution of both equations (23) and (27), then the ground-state density of the
interacting N -electron system moving in the external potential v(�r) is also the ground-state
density of the non-interacting N -electron system moving in the external potential veff(�r). The
latter, however, can be calculated from orthonormal single-electron wavefunctions ψi(�r) by

ρ(�r) =
N∑

i=1

|ψi(�r)|2, (28)

where ψi(�r) are the energy eigenfunctions determined by the KS equations:

− 1
2∇2ψi(�r) + veff(�r)ψi(�r) = εiψi(�r). (29)

The only thing in common for the interacting electron system in v(�r) and the non-interacting
electron system in veff(�r) is that they have the same ground-state electron density.

4. Restricted, unrestricted functional derivatives and some fundamental problems
in DFT

4.1. Ionization energy, Kohn–Sham orbital energies and chemical potential

Thus, the KS scheme of DFT can be established based on the definition of restricted functional
derivatives. Due to the multiple values of δExc[ρ]/δρ(�r), veff(�r) is only determined to within an
additive constant. However, the multiple values of the derivative do not affect the ground-state
electron density, because adding a constant to the effective potential will not change the single-
electron eigenfunctions ψi(�r). The KS eigenenergies, εi , on the other hand, will shift with
the different choice of the constant. The physical meaning of εi , such as the relation between
the HOMO energy εN and the ionization potential of the system I (N) = E(N − 1) − E(N),
where E(N − 1) and E(N) are the ground-state energies of the (N − 1)- and N -electron
systems, respectively, thus depends on the choice of the constant in δExc[ρ]/δρ(�r).

To get equation (23), it is not necessary to extend the functional domain, introduce a
Lagrange multiplier and conduct the variational process for the extended functional. Here,
the constant C generally has no physical meaning and need not to be the chemical potential
of the system. However, if the domain is indeed extended such that the energy functional is
defined for densities unrestricted by the electron number as well, then the results depend on
whether the extended functional has the unrestricted derivative or not. If the unrestricted
derivative exists, it is also a restricted derivative of the restricted functional. Hence in
equation (23), δEv[ρ]/δρ(�r) can be chosen as the unrestricted derivative, and this uniquely
determines the constant C, which now must be the chemical potential µ. The proof is as
follows: suppose E(N) and E(N + dN) are the ground-state energies of the N - and (N + dN)-
electron systems, respectively, where dN is a small quantity. According to equations (3)
and (23), E(N + dN) − E(N) = CdN + o(‖δρ‖), a limit process leads to

C = dE(N)

dN
= µ. (30)

However, there are different extensions which lead to unrestricted derivatives differing by a
constant. Suppose an extension of the functional Ev[ρ] leads to the unrestricted derivative
δEv[ρ]/δρ(�r), we can make another extension E′

v[ρ] by defining

E′
v[ρ + δρ] = Ev[ρ + δρ] + D

∫
�

δρ(�r) d�r, (31)
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where ρ(�r) is the ground-state electron density of the N -electron system and D is a constant.
According to equation (3) or (4), the unrestricted derivative of E′

v[ρ] will be

δE′
v[ρ]

δρ(�r) = δEv[ρ]

δρ(�r) + D. (32)

As a result, different extensions of Ev[ρ] may lead to electron systems with different chemical
potentials. The difference between some extensions of Ev[ρ] has already been noted [2].
However, equation (32) indicates that for different extensions, the δExc[ρ]/δρ(�r), hence
veff(�r), could differ by a constant, thus the relation between εN and I (N) will not be the same,
contrary to what is commonly believed [8].

On the other hand, if the extended energy functional has no unrestricted derivative, then
δEv[ρ]/δρ(�r) in equation (23) must remain a restricted derivative and C is a meaningless
constant. In particular, C �= dE(N)/dN , because equation (3) may no longer hold for
E(N + dN) − E(N). This is consistent with the conclusion of Parr et al [24] that it is
impossible to determine the chemical potential solely from the ground-state electron density
of the N -electron system. The chemical potential depends on how the energy functional is
extended to the domain of electron densities unrestricted by equation (1).

4.2. Exact and approximate exchange-correlation energy functional

For the important functional derivatives in DFT, three additive constants respectively in
δEv[ρ]/δρ(�r), δTs[ρ]/δρ(�r) and δExc[ρ]/δρ(�r) need to be determined. According to
equation (24), the determination of any two of them will fix the third one. In particular,
if an extension results in unrestricted derivatives of Ev[ρ] and Ts[ρ], then δEv[ρ]/δρ(�r)
and δTs[ρ]/δρ(�r) can be chosen as the unrestricted derivatives. δExc[ρ]/δρ(�r), then, is
automatically determined through equation (24). However, because different extensions may
lead to different δEv[ρ]/δρ(�r) and δTs[ρ]/δρ(�r), the resulting unrestricted δExc[ρ]/δρ(�r) can
still differ by a constant. This may clarify an obscurity about the so-called exact exchange-
correlation energy and the exact exchange-correlation potential: one can define and uniquely
determine the exact exchange-correlation energy through equation (24), but even for the exact
Exc[ρ], the exchange-correlation potential δExc[ρ]/δρ(�r) can still vary by an additive constant,
whether it is a restricted or unrestricted derivative. In the case of restricted derivative, this is
due to the constant C in equation (8), and in the case of unrestricted derivative, due to the
constant D in equation (31).

Approximate exchange-correlation energy functionals, such as in local density
approximation (LDA) and general gradient approximation (GGA), directly give an extension of
Exc[ρ], without the need of knowledge of Ev[ρ] and Ts[ρ], and the constant in δExc[ρ]/δρ(�r)
is implicitly determined. For instance, GGA defines the exchange-correlation potential as [25]

Exc[ρ] =
∫

�

f (ρ,∇ρ) d�r, (33)

where f (ρ,∇ρ) is a certain function. Thus, in equation (4)

Exc[ρ + δρ] − Exc[ρ] =
∫

��

[(∂f/∂ρ)δρ + ∇∇ρf · ∇(δρ)] d�r + o(‖δρ‖),
and

δExc[ρ]

δρ(�r) = ∂f (ρ,∇ρ)

∂ρ
. (34)

The relation between εN and I (N) for GGA is then determined by the function f (ρ,∇ρ).
According to equation (4), for a fixed �r , δExc[ρ]/δρ(�r) is a functional of ρ(�r), thus the
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exchange-correlation potential at a position �r may depend on the electron densities far distant
from this position. In LDA and GGA, however, the value of δExc[ρ]/δρ(�r) at �r is solely
determined by the electron densities in an infinitesimal volume around this position. In this
case, for a finite system,

lim
r→∞

δExc[ρ]

δρ(�r) = lim
ρ→0,|∇ρ|→0

∂f (ρ,∇ρ)

∂ρ
= const. (35)

However, the conclusion may be different for the exact exchange-correlation potential. In
fact, in the original paper of Hohenberg and Kohn [1], they were considering an N -electron
system enclosed in a large box. Thus the KS scheme is established for the N -electron system
moving in a region �. In principle, any quantity as a function of position �r can be defined in
and limited to �, and all the integrations in DFT are also conducted in �. There is no need
to consider positions outside this region. Strictly speaking, the functional derivatives in DFT
have no definition outside �. Although on the boundary, the electron density approaches zero,
in general δExc[ρ]/δρ(�r) or veff(�r) may be different at different positions.

4.3. Disputed problems in references

With the definition of restricted functional derivatives and the establishment of KS equations
described above, some of the questions raised by Nesbet [13] might be clarified. First,
equation (2) of [13] holds, but can be derived through another way, not necessarily from
equation (1) of [13], and there is no need to establish the meaning of functionals and functional
derivatives for non-integer electron numbers. Second, KS equations or equation (3) of [13]
also hold, but their only role is to give the electron density. According to equation (8), the
derivative δTs[ρ]/δρ(�r) is a local function, not the operator (−1/2)∇2, as it is in equation (3)
of [13]. Thus, the notation δE/δρ has different meaning in equations (2) and (3) of [13].
These two equations give the same electron density, but this does not mean that the values of
equations (4) and (5) in [13] must be equal, especially, µ could be a meaningless constant,
not necessarily the chemical potential. Finally, if the non-interacting electrons are described
by the normalized single-electron orbitals ψi(�r) which satisfy equation (29) and generate the
electron density ρ(�r) through equation (28), then [13, 19]

Ts[ρ + δρ] − Ts[ρ] = −
∫

�

veff(�r)δρ(�r) d�r + o(‖δρ‖). (36)

According to equation (8),

δTs[ρ]

δρ(�r) = lim
��→�r,��0→�r0
δρ→0

− ∫
��

veff(�r)δρ(�r) d�r − ∫
��0

veff(�r)δρ(�r) d�r∫
��

δρ(�r) d�r + C

= −veff(�r) + veff(�r0) + C = −∇2ψi(�r)
2ψi(�r) +

∇2ψi(�r0)

2ψi(�r0)
+ C. (37)

Equation (37) reveals the relation between the restricted derivative δTs[ρ]/δρ(�r) and the
operator (−1/2)∇2 of single-electron orbitals. Because the chain rule used in [13] and
[15], δTs/δψ

∗
i = (−1/2)∇2ψi = ψiδTs/δρ, does not hold, there is no such paradox as

δTs[ρ]/δρ(�r) = εi − veff(�r) for all the orbitals [15]. We note that the chain rule no longer
holds because ψi(�r) are also restricted by the normalization condition. On the other hand, the
relationship between δTs[ρ]/δρ(�r) and (−1/2)∇2 plays no role in deducing KS equations,
since (−1/2)∇2 comes into KS equations just because for a non-interacting electron system,
its electron density can be calculated by solving single-electron Schrödinger equation. There
is more discussion about the chain rule in [17] and [26].
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Perdew et al [3, 5] gave the ensemble extension of the closed N -electron system. An
(N + ω)-electron system is the statistical mixture of an N -electron pure state with probability
1 − ω and an (N + 1)-electron pure state with probability ω, where 0 < ω < 1. The electron
density ρ(�r) now satisfies

∫
�

ρ(�r) d�r = (1 − ω)N + ω(N + 1) = N + ω. Perdew et al
demonstrated that the energy of the mixed state is

E(N + ω) = (1 − ω)E(N) + ωE(N + 1), (38)

where E(N) and E(N +1) are the ground-state energies of the N - and (N +1)-electron systems,
respectively. Similarly, for the mixture of an (N −1)-electron pure state with probability 1−ω

and an N -electron pure state with probability ω, 0 < ω < 1, its energy is

E(N − 1 + ω) = (1 − ω)E(N − 1) + ωE(N), (39)

where E(N−1) is the ground-state energy of the (N−1)-electron system. From equations (38)
and (39), Perdew et al discovered the discontinuity of the functional derivative δEv[ρ]/δρ(�r)
at the integer N and pointed out that δEv[ρ]/δρ(�r) may not be defined there [3]. In fact,
in the ensemble extension, Ev[ρ] has no unrestricted derivative at integer electron numbers.
The proof is as follows: in equation (4), let ρ(�r) be the ground-state electron density of the
N -electron system. If δρ(�r) > 0 and

∫
��

δρ(�r) d�r = ω > 0, then, due to the minimum
character of E(N + ω), we have Ev[ρ + δρ] � E(N + ω). Hence,

Ev[ρ + δρ] − Ev[ρ] � E(N + ω) − E(N) = ω[E(N + 1) − E(N)],

and

lim
��→�r,δρ→0

Ev[ρ + δρ] − Ev[ρ]∫
��

δρ(�r) d�r � E(N + 1) − E(N). (40)

Similarly, for δρ(�r) < 0 and
∫
��

δρ(�r) d�r = −(1−ω) < 0, we have Ev[ρ+δρ] � E(N−1+ω).
Hence,

Ev[ρ + δρ] − Ev[ρ] � E(N − 1 + ω) − E(N) = (1 − ω)[E(N − 1) − E(N)],

and

lim
��→�r,δρ→0

Ev[ρ + δρ] − Ev[ρ]∫
��

δρ(�r) d�r � E(N) − E(N − 1). (41)

As pointed out by Perdew et al, the upward concavity of the plot of E(N) versus N leads
to 2E(N) < E(N − 1) + E(N + 1), thus E(N) − E(N − 1) < E(N + 1) − E(N), and
equations (40) and (41) mean that the unrestricted δEv[ρ]/δρ(�r) does not exist at N .

If the ensemble energy functional Ev[ρ] and the kinetic energy functional Ts[ρ] have
unrestricted derivatives at fractional electron numbers N − 1 + ω or N + ω, then the disputed
conclusion of Perdew et al, equation (14) of [3],

εmax = µ =
{

−I (N) = E(N) − E(N − 1) (N − 1 < N − 1 + ω < N)

−A(N) = E(N + 1) − E(N) (N < N + ω < N + 1),
(42)

is correct. According to equation (30), δEv[ρ]/δρ(�r) is now indeed the chemical potential µ.
For the non-interacting electron system, we may let δEs[ρ]/δρ(�r) = δEv[ρ]/δρ(�r) = µ and
then determine the effective potential by

veff(�r) = µ − δTs[ρ]

δρ(�r) , (43)

where δTs[ρ]/δρ(�r) = dTs/dω is the unrestricted derivative. Once the effective potential is
determined, one has Es(ω) = (1 − ω)

∑N−1
i=1 εi + ω

∑N
i=1 εi or Es(ω) = (1 − ω)

∑N
i=1 εi +

ω
∑N+1

i=1 εi , this choice of veff(�r) will lead to µ = δEs[ρ]/δρ(�r) = dEs/dω = εmax. However,
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since Ev[ρ] has no unrestricted derivative at the integer N , the determination of veff(�r) by
equation (43) fails to apply here, and equation (26) should be used, in which δExc[ρ]/δρ(�r)
remains the restricted derivative and the constant in the effective potential is undetermined.
Thus for the N -electron system, εN is also undetermined and the relation between εN and
I (N) depends on the choice of the constant in δExc[ρ]/δρ(�r). Of course, one may determine
the effective potential for the N -electron system through equation (43) by letting the electron
density ρ(�r) approach that of the N -electron system from below, thus keeping εN = −I (N),
but this is just one choice.

5. Summary

A constructive definition for the derivative of functionals in DFT defined in the domain of
densities restricted by the electron number is suggested. From this definition, the KS scheme
can be established without extending the domain of DFT functionals. This definition may
help to clarify some fundamental but still obscure or disputed problems of DFT.
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